
Research Question

Introduction

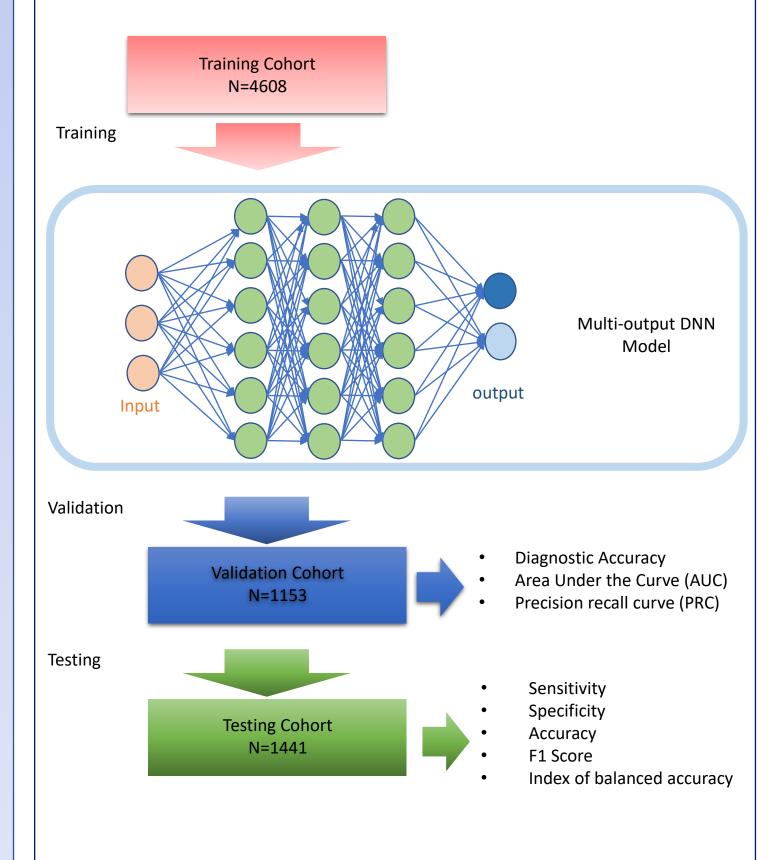
Antiphospholipid antibody syndrome (APS) is an autoimmune disorder where the immune system attacks phospholipids in the blood, leading to the formation of blood clot. This is a major cause of pregnancy complications and miscarriages. The prevalence of the disease is 50/100,000 population. Diagnosing APS requires identifying a lupus anticoagulant.

Svenungsson E, JIM, 2020, 287(4): 349-372

Laboratory Identification of Lupus Anticoagulant requires:

- Prolongation of a phospholipid-dependent screening test, usually a LACresponsive dilute Russell's viper venom time (DRVVT) or activated partial thromboplastin time (APTT)
- Inhibition on mixing with pooled normal plasma depending on the guideline
- Confirmation of phospholipid-dependent inhibition by repeating the prolonged test with excess phospholipid.

Challenges


- Due to many factors such as the heterogeneity of antiphospholipid antibodies, the marked variations in reagents, inconsistencies in post-analytic processes, and interferences that may mimic a LAC, diagnosis of an LAC is both challenging and subjective.
- In addition, anticoagulant drugs, such as heparin, warfarin and direct-acting oral anticoagulants may cause false-negative and false-positive results during LAC testing.
- Exclusion of anticoagulant drug effects is therefore a critical step when evaluating lupus anticoagulant test results.

Research objectives

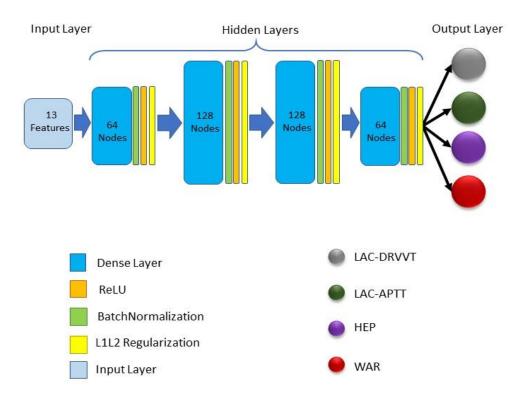
- Develop a deep neural network model for classification of a LAC by the DRVVT and APTT methodologies and the presence of anticoagulant drugs Heparin and Warfarin.
- Train a DNN to achieve high diagnostic accuracy
- Evaluate the performance of the DNN model in the testing cohorts by comparing diagnostic accuracy between the model and a expert rater

Methodology/Project Design

All patient data for training, validation, and testing were obtained from the Mayo Clinic Anticoagulant Laboratory.

Conclusions

In conclusion, the DNN model can accurately classify LACs and


Data Analysis & Results

Labels	Accuracy	AUC	PRC
LAC-DRVVT	96.36%	0.997	0.964
LAC-APTT	96.95%	0.994	0.847
НЕР	96.24%	0.976	0.929
WAR	100%	0.994	0.965

Table 1: Validation of diagnosticaccuracy of the multi-output DNNmodel in the validation cohort. AUC:area under the receiver operatingcharacteristic curve; PRC: area underthe precision-recall curve.

Labels	тр	TN	FP	FN	Accuracy	Sensitivity	Specificity	PPV	NPV	F1	IBA
DRVVT	180	1235	13	13	0.982	0.933	0.990	0.933	0.990	0.933	0.961
ΑΡΤΤ	112	1314	6	9	0.990	0.926	0.995	0.949	0.993	0.937	0.961
HEP	122	1293	11	15	0.982	0.891	0.992	0.917	0.989	0.904	0.941
WAR	177	1252	7	5	0.992	0.973	0.994	0.962	0.996	0.967	0.983

Table 2: Performance metrics of Multi-output DNN model. TP: true positive. TN: true negative. FP: false positive. FN: false negative. PPV: positive predictive value. NPV: negative predictive value. IBA: index of balanced accuracy.

Figure 1: Schematic of multi-output DNN architecture, consisting of an input layer with 13 features, four hidden layers (64, 128, 128, and 64 nodes), and four different output modes for each label (LAC-DRVVT, LAC-APTT, HEP, and WAR).

- common anticoagulation effects without the need to manually extract features.
- Automated AI/ ML-based approach has the added benefit of standardizing classification of LAC profiles across different human raters.
- Model predictions can be potentially be used in downstream processing to append textual comments to cases for review by laboratory specialists prior to releasing results.
- The main limitation of this study was that only one expert-rater was used to determine the ground-truth. Since LAC is a rare disease that has subjective diagnosis, having multiple raters would significantly strengthen the accuracy of the model.